Deleuze and the Genesis of Form
by Manuel DeLanda
One constant in the history of Western philosophy seems to be a certain conception of matter as an inert receptacle for forms that come from the outside. In other words, the genesis of form and structure seems to always involve resources that go beyond the capabilities of the material substratum of these forms and structures. In some cases, these resources are explicitly transcendental, eternal essences defining forms which are imposed on infertile materials. The clearest example of this theory of form is, of course, religious Creationism, in which form begins as an idea in God’s mind, and is then imposed by a command on an obedient and docile matter. But more serious examples also exist. In ancient philosophies Aristotle’s essences seem to fit this pattern, as do those that inhabit Platonist heavens. And although classical physics began with a clean break with Aristotelian philosophy, and did endow matter with some spontaneous behavior (e.g. inertia), it reduced the variability and richness of material expression to the concept of mass, and studied only the simplest material systems (frictionless planetary dynamics, ideal gases) where spontaneous self-generation of form does not ocurr, thus always keeping some transcendental agency hidden in the background.
Yet, as Gilles Deleuze has shown in his work on Spinoza, not every Western philosopher has taken this stance. In Spinoza, Deleuze discovers another possibility: that the resources involved in the genesis of form are not transcendental but immanent to matter itself. A simple example should suffice to illustrate this point. The simplest type of immanent resource for morphogenesis seems to be endogenously-generated stable states. Historically, the first such states to be discovered by scientists studying the behavior of matter (gases) were energy minima (or correspondingly, entropy maxima). The spherical form of a soap bubble, for instance, emerges out of the interactions among its constituent molecules as these are constrained energetically to “seek” the point at which surface tension is minimized. In this case, there is no question of an essence of “soap-bubbleness” somehow imposing itself from the outside, an ideal geometric form (a sphere) shaping an inert collection of molecules. Rather, an endogenous topological form (a point in the space of energetic possibilities for this molecular assemblage) governs the collective behavior of the individual soap molecules, and results in the emergence of a spherical shape.
Read More @ cddc.vt.edu
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment